Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D476-D482, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37986218

RESUMO

The incorporation of non-canonical amino acids (ncAAs) into proteins is a powerful technique used in various research fields. Genetic code expansion (GCE) is the most common way to achieve this: a specific codon is selected to be decoded by a dedicated tRNA orthogonal to the endogenous ones. In the past 30 years, great progress has been made to obtain novel tRNA synthetases (aaRSs) accepting a variety of ncAAs with distinct physicochemical properties, to develop robust in vitro assays or approaches for codon reassignment. This sparked the use of the technique, leading to the accumulation of publications, from which gathering all relevant information can appear daunting. Here we present iNClusive (https://non-canonical-aas.biologie.uni-freiburg.de/), a manually curated, extensive repository using standardized nomenclature that provides organized information on ncAAs successfully incorporated into target proteins as verified by mass spectrometry. Since we focused on tRNA synthetase-based tRNA loading, we provide the sequence of the tRNA and aaRS used for the incorporation. Derived from more than 687 peer-reviewed publications, it currently contains 2432 entries about 466 ncAAs, 569 protein targets, 500 aaRSs and 144 tRNAs. We foresee iNClusive will encourage more researchers to experiment with ncAA incorporation thus contributing to the further development of this exciting technique.


Assuntos
Sequência de Aminoácidos , Aminoácidos , Bases de Dados de Proteínas , Proteínas , Aminoácidos/química , Aminoácidos/metabolismo , Códon/genética , Código Genético , Proteínas/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Internet
2.
Breast Cancer Res ; 24(1): 65, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192788

RESUMO

BACKGROUND: Ribosomal biogenesis and ribosomal proteins have attracted attention in the context of tumor biology in recent years. Instead of being mere translational machineries, ribosomes might play an active role in tumor initiation and progression. Despite its importance, regulation of ribosomal biogenesis is still not completely understood. METHODS: Using Gene Set Enrichment Analysis of RNA sequencing and proteomical mass spectrometry data in breast cancer cells expressing Krüppel-like factor 7 (KLF7), we identified processes altered by this transcription factor. In silico analyses of a cohort of breast cancer patients in The Cancer Genome Atlas confirmed our finding. We further verified the role of KLF7 the identified ribosomal processes in in vitro assays of mammary carcinoma cell lines and analyses of breast cancer patients' tissue slices. RESULTS: We identified the transcription factor Krüppel-like factor 7 (KLF7) as a regulator of ribosomal biogenesis and translation in breast cancer cells and tissue. Highly significant overlapping processes related to ribosomal biogenesis were identified in proteomics and transcriptomics data and confirmed in patients' breast cancer RNA Seq data. Further, nucleoli, the sites of ribosomal biogenesis, were morphologically altered and quantitatively increased in KLF7-expressing cells. Pre-rRNA processing was identified as one potential process affected by KLF7. In addition, an increase in global translation independent from proliferation and transcription was observed upon exogenous KLF7 expression in vitro. Importantly, in a cohort of breast cancer patients, KLF7-expression levels correlated with aggressiveness of the intrinsic breast cancer subtype and tumor grading. Moreover, KLF7 correlated with nucleolar characteristics in human breast tumor tissue, indicating a role for KLF7 in ribosomal biogenesis. CONCLUSION: In mammary carcinoma, KLF7 is involved in ribosomal biogenesis. Alterations of ribosomal biogenesis has far reaching quantitative and qualitative implications for the proteome of the cancer cells. This might influence the aggressiveness of cancer cells.


Assuntos
Neoplasias da Mama , Carcinoma , Neoplasias da Mama/genética , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteoma , Precursores de RNA , Proteínas Ribossômicas/genética , Fatores de Transcrição
3.
Biophys J ; 121(17): 3224-3241, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35927956

RESUMO

Macrophages use filopodia to withdraw particles toward the cell body for phagocytosis. This can require substantial forces, which the cell generates after bio-mechanical stimuli are transmitted to the filopodium. Adaptation mechanisms to mechanical stimuli are essential for cells, but can a cell iteratively improve filopodia pulling? If so, the underlying mechanic adaptation principles organized on the protein level are unclear. Here, we tackle this problem using optically trapped 1 µm beads, which we tracked interferometrically at 1 MHz during connection to the tips of dorsal filopodia of macrophages. We observe repetitive failures while the filopodium tries to pull the bead out of the optical trap. Analyses of mean bead motions and position fluctuations on the nano-meter and microsecond scale indicate mechanical ruptures caused by a force-dependent actin-membrane connection. We found that beads are retracted three times slower under any load between 5 and 40 pN relative to the no-load transport, which has the same speed as the actin retrograde flow obtained from fluorescent speckle tracking. From this duty ratio of pulling velocities, we estimated a continuous on/off binding with τoff = 2⋅τon, with measured off times τoff = 0.1-0.5 s. Remarkably, we see a gradual increase of filopodia pulling forces from 10 to 30 pN over time and after failures, which points toward an unknown adaptation mechanism. Additionally, we see that the attachment strength and friction between the bead and filopodium tip increases under load and over time. All observations are typical for catch-bond proteins such as integrin-talin complexes. We present a mechanistic picture of adaptive mechanotransduction, which formed by the help of mathematical models for repetitive tip ruptures and reconnections. The analytic mathematical model and the stochastic computer simulations, both based on catch-bond lifetimes, confirmed our measurements. Such catch-bond characteristics could also be important for other immune cells taking up counteracting pathogens.


Assuntos
Actinas , Pseudópodes , Actinas/metabolismo , Macrófagos/metabolismo , Mecanotransdução Celular , Fagocitose/fisiologia , Pseudópodes/metabolismo
4.
Synth Syst Biotechnol ; 6(4): 402-413, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34901479

RESUMO

In the rapidly expanding field of peptide therapeutics, the short in vivo half-life of peptides represents a considerable limitation for drug action. D-peptides, consisting entirely of the dextrorotatory enantiomers of naturally occurring levorotatory amino acids (AAs), do not suffer from these shortcomings as they are intrinsically resistant to proteolytic degradation, resulting in a favourable pharmacokinetic profile. To experimentally identify D-peptide binders to interesting therapeutic targets, so-called mirror-image phage display is typically performed, whereby the target is synthesized in D-form and L-peptide binders are screened as in conventional phage display. This technique is extremely powerful, but it requires the synthesis of the target in D-form, which is challenging for large proteins. Here we present finDr, a novel web server for the computational identification and optimization of D-peptide ligands to any protein structure (https://findr.biologie.uni-freiburg.de/). finDr performs molecular docking to virtually screen a library of helical 12-mer peptides extracted from the RCSB Protein Data Bank (PDB) for their ability to bind to the target. In a separate, heuristic approach to search the chemical space of 12-mer peptides, finDr executes a customizable evolutionary algorithm (EA) for the de novo identification or optimization of D-peptide ligands. As a proof of principle, we demonstrate the validity of our approach to predict optimal binders to the pharmacologically relevant target phenol soluble modulin alpha 3 (PSMα3), a toxin of methicillin-resistant Staphylococcus aureus (MRSA). We validate the predictions using in vitro binding assays, supporting the success of this approach. Compared to conventional methods, finDr provides a low cost and easy-to-use alternative for the identification of D-peptide ligands against protein targets of choice without size limitation. We believe finDr will facilitate D-peptide discovery with implications in biotechnology and biomedicine.

5.
Cells ; 10(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669258

RESUMO

DJ-1 is an abundant and ubiquitous component of cellular proteomes. DJ-1 supposedly exerts a wide variety of molecular functions, ranging from enzymatic activities as a deglycase, protease, and esterase to chaperone functions. However, a consensus perspective on its molecular function in the cellular context has not yet been reached. Structurally, the C-terminal helix 8 of DJ-1 has been proposed to constitute a propeptide whose proteolytic removal transforms a DJ-1 zymogen to an active hydrolase with potential proteolytic activity. To better understand the cell-contextual functionality of DJ-1 and the role of helix 8, we employed post-mitotically differentiated, neuron-like SH-SY5Y neuroblastoma cells with stable over-expression of full length DJ-1 or DJ-1 lacking helix 8 (ΔH8), either with a native catalytically active site (C106) or an inactive site (C106A active site mutation). Global proteome comparison of cells over-expressing DJ-1 ΔH8 with native or mutated active site cysteine indicated a strong impact on mitochondrial biology. N-terminomic profiling however did not highlight direct protease substrate candidates for DJ-1 ΔH8, but linked DJ-1 to elevated levels of activated lysosomal proteases, albeit presumably in an indirect manner. Finally, we show that DJ-1 ΔH8 loses the deglycation activity of full length DJ-1. Our study further establishes DJ-1 as deglycation enzyme. Helix 8 is essential for the deglycation activity but dispensable for the impact on lysosomal and mitochondrial biology; further illustrating the pleiotropic nature of DJ-1.


Assuntos
Cisteína/metabolismo , Neurônios/metabolismo , Proteína Desglicase DJ-1/metabolismo , Proteoma/metabolismo , Humanos , Lisossomos/metabolismo , Mutação/genética , Estresse Oxidativo/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Peptídeo Hidrolases/metabolismo , Proteína Desglicase DJ-1/genética , Proteoma/genética
6.
Anal Biochem ; 583: 113323, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31129134

RESUMO

To enable the analysis of several hundreds to thousands of interactions in parallel, high-throughput systems were developed. We used established thrombin aptamer assays to compare three such high-throughput imaging systems as well as analysis software and user influence. In addition to our own iRIf-system, we applied bscreen and IBIS-MX96. As non-imaging reference systems we used Octet-RED96, Biacore3000, and Monolith-NT.115. In this study we measured 1378 data points. Our results show that all systems are suitable for analyzing binding kinetics, but the kinetic constants as well as the ranking of the selected aptamers depend significantly on the applied system and user. We provide an insight into the signal generation principles, the systems and the results generated for thrombin aptamers. It should contribute to the awareness that binding constants cannot be determined as easily as other constants. Since many parameters like surface chemistry, biosensor type and buffer composition may change binding behavior, the experimenter should be aware that a system and assay dependent KD is determined. Frequently, certain conditions that are best suited for a given biosensing system cannot be transferred to other systems. Therefore, we strongly recommend using at least two different systems in parallel to achieve meaningful results.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais/métodos , Ensaios de Triagem em Larga Escala/métodos , Ressonância de Plasmônio de Superfície/métodos , Trombina/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Cinética , Ligação Proteica
7.
Biosens Bioelectron ; 115: 97-103, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803867

RESUMO

The detection of antibodies from blood sera is crucial for diagnostic purposes. Miniaturized protein assays in combination with microfluidic setups hold great potential by enabling automated handling and multiplexed analyses. Yet, the separate expression, purification, and storage of many individual proteins are time consuming and limit applicability. In vitro cell-free expression has been proposed as an alternative procedure for the generation of protein assays. We report the successful in vitro expression of different model proteins from DNA templates with an optimized expression mix. His10-tagged proteins were specifically captured and immobilized on a Ni-NTA coated sensor surface directly from the in vitro expression mix. Finally, the specific binding of antibodies from rabbit-derived blood sera to the immobilized proteins was monitored by imaging reflectometric interferometry (iRIf). Antibodies in the blood sera could be identified by binding to the respective epitopes with minimal cross reactivity. The results show the potential of in vitro expression and label-free detection for binding assays in general and diagnostic purposes in specific.


Assuntos
Anticorpos/sangue , Antígenos/sangue , Técnicas Biossensoriais , Proteínas Imobilizadas/química , Anticorpos/química , Interferometria/métodos
8.
Dev Cell ; 15(5): 762-72, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19000840

RESUMO

DSL ligands promote proteolysis of the Notch receptor, to release active Notch intracellular domain (N(ICD)). Conversely, the E3 ubiquitin ligase Deltex can activate ligand-independent Notch proteolysis and signaling. Here we show that Deltex effects require endocytic trafficking by HOPS and AP-3 complexes. Our data suggest that Deltex shunts Notch into an endocytic pathway with two possible endpoints. If Notch transits into the lysosome lumen, it is degraded. However, if HOPS and AP-3 deliver Notch to the limiting membrane of the lysosome, degradation of the Notch extracellular domain allows subsequent Presenilin-mediated release of N(ICD). This model accounts for positive and negative regulatory effects of Deltex in vivo. Indeed, we uncover HOPS/AP-3 contributions to Notch signaling during Drosophila midline formation and neurogenesis. We discuss ways in which these endocytic pathways may modulate ligand-dependent and -independent events, as a mechanism that can potentiate Notch signaling or dampen noise in the signaling network.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Animais , Drosophila melanogaster/citologia , Complexos Multiproteicos , Receptores Notch/metabolismo
9.
Development ; 135(9): 1597-604, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18367555

RESUMO

The development of myogenic cells is mainly determined by expression of two myogenic factors, Myf5 and Myod1 (MyoD), which genetically compensate for each other during embryogenesis. Here, we demonstrate by conditional cell ablation in mice that Myf5 determines a distinct myogenic cell population, which also contains some Myod1-positive cells. Ablation of this lineage uncovers the presence of a second autonomous myogenic lineage, which superseded Myf5-dependent myogenic cells and expressed Myod1. By contrast, ablation of myogenin-expressing cells erased virtually all differentiated muscle cells, indicating that some aspects of the myogenic program are shared by most skeletal muscle cells. We conclude that Myf5 and Myod1 define different cell lineages with distinct contributions to muscle precursor cells and differentiated myotubes. Individual myogenic cell lineages seem to substitute for each other within the developing embryo.


Assuntos
Linhagem da Célula/fisiologia , Desenvolvimento Muscular/fisiologia , Mioblastos Esqueléticos/citologia , Fator Regulador Miogênico 5/fisiologia , Animais , Animais Recém-Nascidos , Osso e Ossos/anormalidades , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Músculo Esquelético/anormalidades , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Mutação , Proteína MyoD/genética , Proteína MyoD/fisiologia , Mioblastos Esqueléticos/fisiologia , Fator Regulador Miogênico 5/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...